Todos estos ejemplos han sido probados con postgresql 9.1 (para efectos de permisos sobre la bd)
Se recomiendan estas 3 practicas:
1) Efectuar borrado lógico en cada tabla:

Estas técnicas dependen más del desarrollo (sea en la BD por functions o sea en el lenguaje que tendrá acceso a la BD) que de la propia BD, ya que los datos realmente existen. Sin embargo se puede regular esto dándole permisos sobre las tablas y los objetos que no desee visualizar a los demás usuarios.
a) Creando 2 campos (fecha inicial y fecha final). El borrado se hace por fecha final is not null
Para esta técnica, se hace necesario crear una función que obtenga los datos donde fecha_final is null o agregar esta condición en el sql del frontend, y otra que borre los datos actualizando fecha_final = now()
b) Creando un campo novedad (I= Insertado, M=Modificado, B = Borrado) y un campo fechanovedad
Para esta técnica, se hace necesario crear una función que obtenga los datos donde novedad!=’B’ o agregar esta condición en el sql del frontend, y otra que borre los datos actualizando novedad=’B’ y fecha_novedad = now()
2) Crear un trigger en cada tabla y copiar el registro a una tabla madre (con muchos campos o con un campo hstore o text donde esté almacenada la información del registro) y luego borrarlo (No aparece en la tabla, pero lo puedes recuperar) Este método requiere que cada tabla tenga un trigger, y éste tenga vinculado la función que efectúa la copia, que haga este trabajo cuando se inserte. Este método permite que las tablas puedan ser accedidas sin tener que crear functions especiales para obtener la información (Sin embargo se recomienda altamente crearlos por velocidad de acceso a los datos)
Mira borrado físico en el archivo tutorialsql.sql
3) Hacer lo mismo que la practica 2, pero guardándolo comprimido con un método fuerte de compresión (zip, 7z, rar, etc)
Esta te la dejo para que la cacharrees...

